Carbon nanotube transistors for biosensing applications.

نویسنده

  • G Gruner
چکیده

Electronic detection of biomolecules, although still in its early stages, is gradually emerging as an effective alternative to optical detection methods. We describe field effect transistor devices with carbon nanotube conducting channels that have been developed and used for biosensing and biodetection. Both transistors with single carbon nanotube conducting channels and devices with nanotube network conducting channels have been fabricated and their electronic characteristics examined. The devices readily respond to changes in the environment, and such effects have been examined using gas molecules and coatings with specific properties. Device operation in (conducting) buffer and in a dry environment--after buffer removal--is also discussed. Applications in the biosensing area are illustrated with three examples: the investigation of the interaction between devices and biomolecules, the electronic monitoring of biomolecular processes, and attempts to integrate cell membranes with active electronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon nanotube thin film transistors for biomedical applications

CARBON NANOTUBE THIN FILM TRANSISTORS FOR BIOMEDICAL APPLICATIONS Vanessa Velasco August 5, 2010 The application of carbon nanotubes (CNTs) has captivated the curiosity of today's experts due to the escalating potential in the field of electronic detection of biomolecules. Their extreme environmental sensitivity and small size make them ideal candidates for future biosensing technologies. Recen...

متن کامل

Application of Neural Space Mapping for Modeling Ballistic Carbon Nanotube Transistors

In this paper, using the neural space mapping (NSM) concept, we present a SPICE-compatible modeling technique to modify the conventional MOSFET equations, to be suitable for ballistic carbon nanotube transistors (CNTTs). We used the NSM concept in order to correct conventional MOSFET equations so that they could be used for carbon nanotube transistors. To demonstrate the accuracy of our mod...

متن کامل

Optimizing the signal-to-noise ratio for biosensing with carbon nanotube transistors.

The signal-to-noise ratio (SNR) for real-time biosensing with liquid-gated carbon nanotube transistors is crucial for exploring the limits of their sensitivity, but has not been studied thus far. Although biosensing is often performed at high transconductance where the device displays the largest gate response, here we show that the maximum SNR is actually obtained when the device is operated i...

متن کامل

Identifying the mechanism of biosensing with carbon nanotube transistors.

Carbon nanotube transistors have outstanding potential for electronic detection of biomolecules in solution. The physical mechanism underlying sensing however remains controversial, which hampers full exploitation of these promising nanosensors. Previously suggested mechanisms are electrostatic gating, changes in gate coupling, carrier mobility changes, and Schottky barrier effects. We argue th...

متن کامل

Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2

Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical and bioanalytical chemistry

دوره 384 2  شماره 

صفحات  -

تاریخ انتشار 2006